

2019 PDA Visual Inspection Forum

Preparing for the Future of Visual Inspection

APRIL 23-24 | WASHINGTON, DC

EXHIBITION: APRIL 23-24

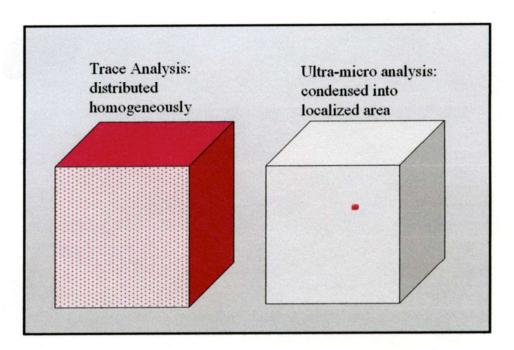
AN INTRODUCTION TO VISUAL INSPECTION TRAINING COURSE: APRIL 25-26

pda.org/2019Visual

#PDAVisual

Utilization of a Forensic Microscopy (Problem Solving) Approach to the Identification of Subvisible Particles Observed in a Sterile Ophthalmic Solution on Stability

Mary Lee Ciolkowski, Ph.D. Sr. Principal Scientist Pharma Technical Services



Outline

- Sub-Visible Particle ID: Often a trace analysis challenge
- Classification of particle types and compendial expectations
- Example: Identification of sub-visible particulates formed during stability and particle source

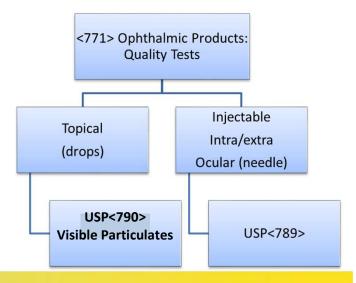
Particle Characterization = Ultra-Microanalysis

Pharmaceutical Particle Classification

Extrinsic Intrinsic Inherent

- Hairs
- Celluloses
- Skin Flakes
- Fibers, Lint
- Insect parts
- Glass
- Soil

- Formulation ingredients
- Packaging component related Si oil, slip agents, shavings
- Changes on stability
 - product/pkg interaction
 - precipitation of actives or inactives
- Particle generation during filling process
- Cleanliness of pkg components



- Protein aggregates

Particle Requirements for Parenterals and Ophthalmic Solutions (injectables vs topical drops)

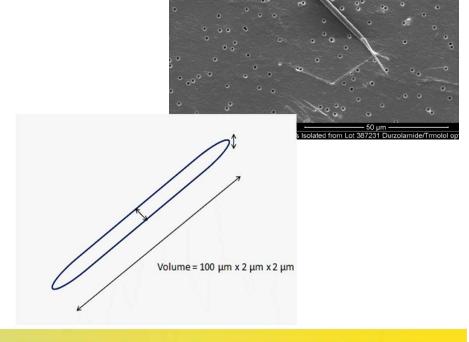
New content:

Visible inspection of cell and gene products Silicone oil droplets and impact on subvisible particle counts in biopharmaceuticals

Particle Morphology and Estimate of Single Particle Mass

Needle Morphology: $100 \times 2 \times 2 \mu m$

Volume: 400 µm³


Mass/particle:

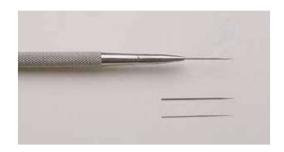
 $(400 \mu m^3) * (10^{-4} cm/\mu m)^3 * 1.5 g/cm^3 (density)$

= 6 x 10⁻¹⁰ g/particle or 0.6 ng/particle

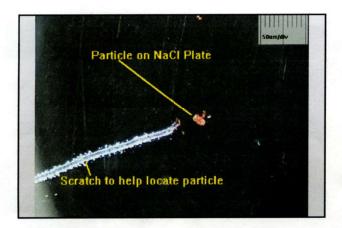
At the USP<789> limit of 50 particles/mL ≈ 30 ppb in single bottle!

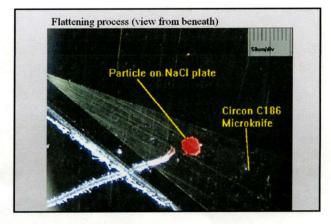
Thousands of Particles Correlates to Low ppb Concentration!

Direct, Physical Removal of Specimen from the Matrix

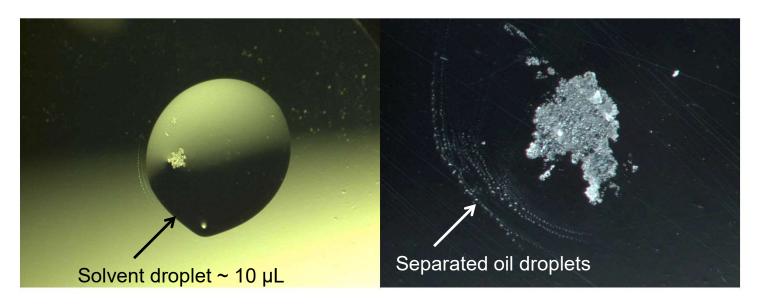

Direct removal, dry: tungsten needle,

MicroTools


Direct removal, wet: capillary tube


(Wiretrol)

Class 100 Clean Hood: Handling, Filtration



Negative Controls Essential!

Serial Solvent Washing: Multicomponent Sample

What extracts, separates?
Solubility of components in various solvents
Non-polar → Polar

Forensic Microscopy: Sequential and Progressive Particle Characterization Approach

Visual Inspection and Low Power Stereomicroscopic Examination (understanding the appearance & context of the specimen)

Physical Tests: Pressing (elastomeric, brittle); Magneticity

Polarized Light Microscopic Examination (size, shape, color, crystallinity)

Thermal Analysis: Flame Test and/or Hot Stage Microscopy (Is it organic, inorganic or mixture?)

Inorganics: Microchemical tests, Refractive index, SEM-EDS

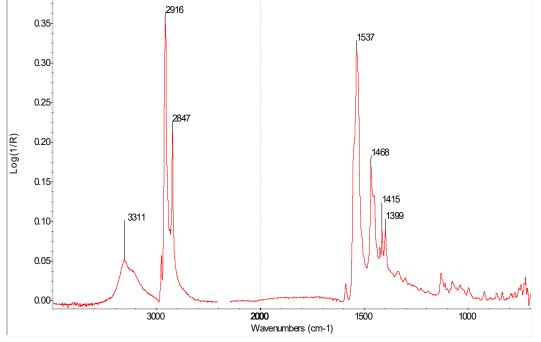
Organics: IR microscopy (size limit ~ 15-20 μ m) , Raman microscopy (to ~ 1 μ m),

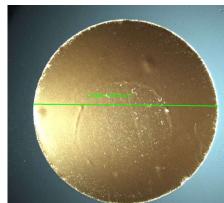
Atmospheric Solids Analysis Probe MS

Sterile Ophthalmic Solution

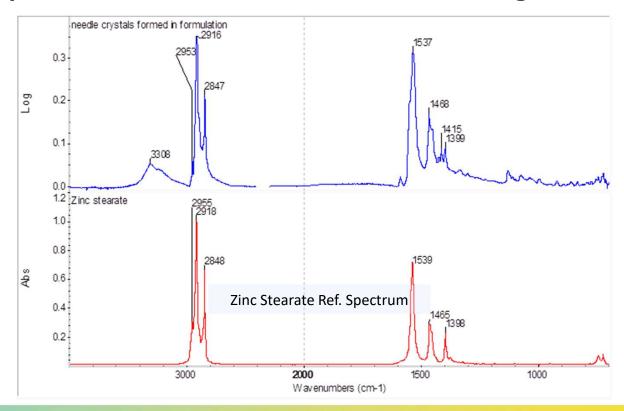
Travoprost 0.004% ophthalmic solution Prostaglandin analog; treatment for glaucoma

Ingredient	Source or grade	Each mL contains (mg)	Function
Travoprost	Industriale Chimica/USP	0.040	Drug active
PEG-40 hydrogenated castor oil	BASF Chemicals/USP-NF	5.00	Drug solubilizer
Sorbitol	NF grade	2.50	Tonicity
Boric acid	NF grade	10.00	Preservative/buffer
Propylene glycol	NF grade	7.50	Preservative; tonicity
Zinc chloride (ZnCl)	EMD Chemicals/USP	0.025	Preservative
Hydrochloric acid (HCl) and/or sodium hydroxide (NaOH)		q.s. to pH	pH adjustment
Purified water		q.s. to 1 mL	Vehicle

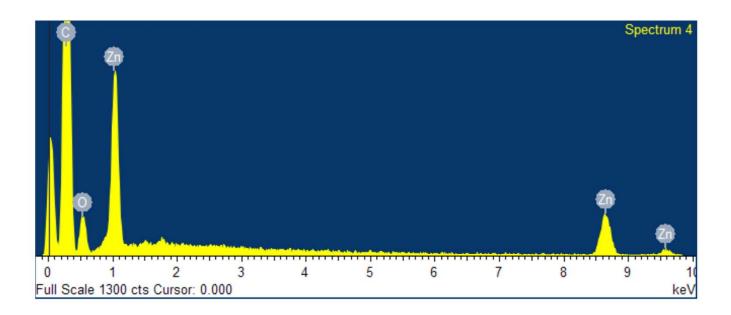

Visible Particle Observation and Particle Morphology



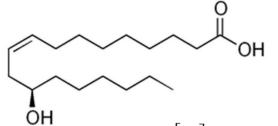
Infrared spectrum (reflectance) of needle particles isolated from ophthalmic solution formulation



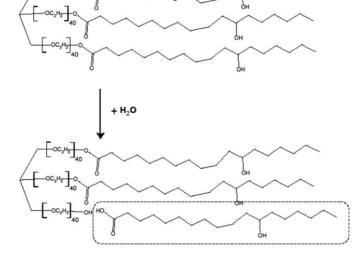
13 mm gold coated track etched polycarbonate



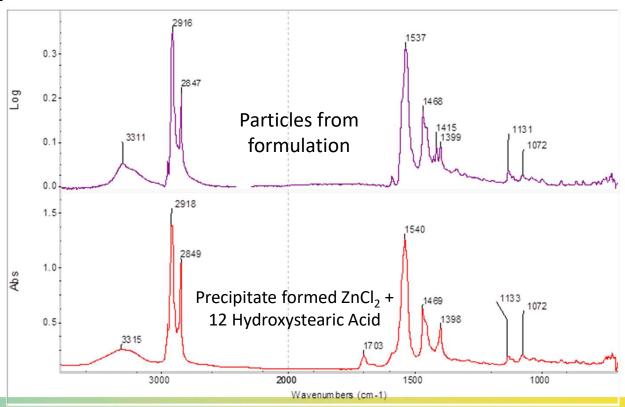
Infrared Spectral Features Consistent with a Long Chain Fatty Acid Salt



SEM-EDS Spectrum of Washed Particle Isolate



PEG-40 hydrogenated castor oil: Source of fatty acid


Ricinoleic acid (12 hydroxy stearic acid): predominant fatty acid in castor oil

- -Hydrolysis can produce free hydroxy stearic acid (HSA)
- HSA also potential impurity in the raw material

Verification of Identity

 $ZnCl_2$ at ~ 0.1 mg/mL in water pH ~ 3 + 22 mg/mL HSA in IPA (20 mLs)

Conclusions

- Problem solving approach follows a simple to complex analytical progression
- Maximize data from a minimum amount of sample; attempt to be non-destructive
- Progressive data gathering builds a body of evidence to support identity
- Goal: Clean & Stable

Acknowledgments

Mark Smith
D. Scott Aldrich
Scott Ingham
Brian Glass

